EDONA/HMI — Modelling of Advanced Automotive Interfaces

S. Boisgérault', E. Vecchié', O. Meunier?, J.-M. Temmaos?

1: CAOR, Mathématiques et Systemes, Mines ParisTech, 60 boulevard Saint-Michel, 75272 Paris, France.
2: Intempora, 2 pl. Jules Gevelot, 92130 Issy les Moulineaux, France.
3: Visteon Software Technologies, 1800 route des Crétes , 06906 Sophia Antipolis, France.

Abstract: Screens are becoming the most important
media for information systems in vehicles. They en-
abled a wide variety of new services such as naviga-
tion systems, driver assistance or entertainment. They
also are increasingly replacing the analog instrument
clusters used to display classic vehicle information.
The design of user interfaces for such targets involves
some usual requirements like rapid prototyping and in-
teroperability. As these user interfaces present infor-
mation that may directly influence the driver’s behavior,
they shall also be handled as safety-critical software.
In this paper, we describe a model-based process for
the design of such interfaces that address these is-
sues. We present — in the context of the EDONA
project’ — a domain-specific model for automotive in-
terfaces that relies on graphic and functional stan-
dards. We then describe a code generation architec-
ture and runtime platform.

Keywords: human-machine interfaces, automotive,
domain-specific language, model-based design.

1 Introduction

Scope Definition. In car cockpits, screens are increas-
ingly present and used as media for the hosting of
human-machine interfaces (HMI). When they are used
to display vehicle and environment data, these screens
replace or complement the more traditional — analog
or digital — instrument clusters. This evolution is moti-
vated by the flexibility of such systems: they can easily
support the classic features of instrument clusters but
are not limited to a specific component layout. Beyond
this extra configurability, they also enable the design of
innovative and highly-specific interfaces that would not
be otherwise possible. Such interfaces may support
advanced in-vehicle applications such as driving as-

"This work has been performed in the context of the EDONA
project of the System@tic Paris Région Cluster. EDONA is an Open
Development Platform to Automotive Standards. It is supported by
the “Direction Générale de la Compétitivité, de I'lndustrie et des Ser-
vices (DGCIS)”, the “Conseil Régional d’ile de France”, the “Conseil
Général des Yvelines”, the “Conseil Général du Val d’Oise” and the
“Conseil Général des Hauts de Seine”. www.edona.fr

sistance, navigation systems, vehicle communication,
etc. Therefore high-end vehicles and car prototypes
benefit the most from this increasing flexibility.

While we present in this paper models and tools to
design human-machine interfaces for such in-vehicle
screens, due to its considerable diversity, we do not
address the full range of such systems. Embedded
systems with little integration with the vehicle functions
— DVD players for example — may be considered as
traditional consumer electronics products as far as in-
terface design is concerned.

Despite a flexible and large design space that will be
detailled in the next section, we also exclude from our
design scope some very specific interfaces that are
categories in their own right. For example, we do not
consider integral design of 3D navigation systems or
video systems. Our framework however may be used
to design some parts of such systems as it will be
demonstrated in the last section.

What we address specifically is the direct extension of
the instrument cluster concept: design of display com-
ponents that represent the evolution of vehicle or envi-
ronment data in the most adequate way. Flexibility in
the design space is required to allow for specific design
accomodating traditional data (RPM, speed, fluid lev-
els, etc.) as well as advanced or even future services.
In this respect, the last section of the paper will present
an interface focused on pedestrian safety, an original
source of data if any. As such information systems may
have a direct influence on the driver’s behavior, safety
is an issue. The HMI design process and models shall
therefore be amenable to safety analysis and certifica-
tions.

Finally, due to the advanced nature of applications, our
solution is at ease with high-end graphic platforms —
typically TFT-LCD, full-color reconfigurable display with
extensive 2D graphics library support. However for
simpler applications and low-end platforms (LED, VFD,
etc.), our framework can still be used for modelling,
simulation and specification but automatic code gener-
ation support is not available.

Issues. The design of this new generation of HMIs
raises several issues. Interoperability — the ability to

<emm
\ "
"~ 50801007
Zuo weH 20
wo—
160
v

£ DOORS OPEN B
H F

‘e
f /
. I \ B0 80 100 ”

uo weH 07
o —20 o —

-2 IED\“

IRPA 0og
3" 134.8 005210 E

Figure 1: A hybrid — mechanical and screen-
based — instrument cluster. Displays may be used
to reproduce the traditional features of mechanical
systems (here RPM and speed dials) — as demon-
strated in the top figure — but may also be easily
reconfigured to display other kinds of vehicule in-
formation.

easily exchange components specifications and de-
signs — is a major industrial issue. Also, as they
present information that may directly influence the
driver behavior, these HMIs shall also be treated as
safety-critical software components. We propose here
a model-based approach that relies on a scene graph
graphics layer and a synchronous functional layer.
Synchronous languages [9, 13, 3] are standard rep-
resentations for safety critical software, they enjoy a
clear and simple semantics that allows various pro-
gram analysis like automatic test generation [15] or
model-checking [10]. An efficient design process and
the ability to do some rapid prototyping are crucial as
well. Our model comes together with dedicated tools
for the assisted design and the compilation of compo-
nents into executable graphics interfaces.

2 HMI Models

We formalize in this section the meta-model that un-
derlies the whole EDONA/HMI design process. The
HMI graphics content is described as a data-driven
scene graph, a powerful yet simple data model de-
scribed in section 2.1. The document structure is fixed
and no graphics node is ever created at runtime ;
the model is therefore amenable to extensive analysis.
This graphics layer is complemented with a functional
layer that provides a component model for HMI to be
handled at the proper abstraction level. The functional

model is a data-flow language described in the sec-
tion 2.2, an execution model widely used in the design
safety-critical systems. The details of their integration
that forms the HMI meta-model is discussed in section
2.3.

2.1 Data-driven Scene Graph

The graphics layer of the EDONA/HMI model is a 2D
data-driven scene graph. A scene graph — or hierar-
chical display list — is a structured collection of graphic
nodes, commonly used in 2D and 3D vector graphics.
It is ultimately composed of primitive nodes such as
vector graphic shapes (lines, circles, etc.), images and
text. On the other hand, compound nodes are node
containers that structure the scene graph.

All types of graphic nodes may be configured. Con-
sider for example the text node definition

text(text <« “hello”, (1)
transform « rotate(90),
fill < rgh(255,0,0),

family < “Helvetica”)

Such an attribute assignment is used as a single
and uniform mechanism to configure node core data
(‘text’), and the geometrical transformations (‘trans-
form’) as well as style options (fill’ and ‘family’) that
are applied to the node.

Some attributes used in this assignment are type-
specific: the ‘text’ data and font ‘family’ for example
are meaningless for all but text nodes. Other attributes
are shared between several node types: the ill’ color
is applicable to all vectorial constructs and the geo-
metrical ‘transform’ to all graphic nodes. The list of all
attributes applicable to a given node type is its context.
The union of all such contexts is called the graphics
context.

Finally, node definitions may be partial: although the
‘opacity’ attribute belongs to the text node context, it
does not appear in the node definition (1). Such un-
defined values are to be interpreted as a convenience
mecanism for default values — 1.0 would be the opacity
natural default for example. They may also be used to
support context inheritance.

We formalize briefly the structure of this scene graph
grammar. More information about the set of node
types and corresponding context attributes that we ac-
tually consider may be found in section 2.4. Let ‘B3 be
the set of primitive node types, let g — the group — be
the single compound node, and let & be the graphics
context. Our graphics model is given by the system

node := p(BG « valj,valy,---), peP (2)
| g(® « valy,valy, - -){node) (3)
| nodej, nodey (4)

The notation (& « valy, valy, - --) is only a shortcut for
the graphics context assignment (a; <« val;|a; € &)
as it appears in the example (1). We denote &(t) the
context of the node type ¢ and L the undefined value.
The graphics context assignment & « valy, valy, - - in
(2) is subject to the consistency constraint

{CLZ‘) | vall- # J_} C (’5(]9)
and accordingly the same assignment in (3) to
{ai) | Vali # J_} C Qﬁ(g)

For the sake of simplicity, we may assume here that
all context attribute values belong to the same value
space. A concrete instance of value space would
gather heterogeneous attribute types such as:

val = L
| int | float | matrix(3,3) (5)
| text | color | fontname

A scene graph is in our terminology data-driven if the
value space used in (2) and (3) is composed of unde-
fined values and data flows.

val = 1 | flow (6)

During the HMI execution, the functional layer — a data-
flow program whose structure is described in the sec-
tion 2.2 — computes the graphics state: the set of con-
crete values that are substituted to the data flows. In
this data model, the structure and nodes of the graph-
ics document are given but the graphics state is muta-
ble.

2.2 Functional Model
In the EDONA/HMI model, the graphics state is driven

by a synchronous data-flow program, formally defined
by the following grammar:

stmt = flow = expr (7)
| mnext(flow;) = flows (8)
| stmty, stmtg (9)
| stmt when flow (10)

The *, operator denotes concurrent execution of state-
ments, ‘next’ the delay operator and the ‘when’ con-
struct represents conditional execution. Our actual
functional model also has default values for constructs
(8) and (10) so that data flow values are always well
defined. This feature is not presented for the sake of
simplicity. For the same reason we do not discuss typ-
ing issues: expression expr are either constants, func-
tion calls or the “if-then-else” construct:

expr := constant (11)
| fet(flowq, flowy,...) (12)
| flow; ? flows : flows (13)

We do not detail the well-known semantics of such
data-flow programs but refer the reader to [4]. Instead
we focus on issues that directly impact the HMI com-
ponent model and the integration of its functional and
graphics layer.

Scoping. Every statement defines implicitely input
and output data flows determined by the functions J
and ©:

J(flow = expr) = J(expr)
J(next(flow;) = flowy) = {flows} — {flow;}
J(stmty, stmte) = (J(stmty) — O(stmtz))u

(J(stmty) — O(stmty))
= J(stmt) U {flow}
6]
{ﬂOWl, ﬂOWQ, .. }

{flowy, flows, flows}
(14)

J(stmt when flow)
J(constant)
J(fet(flowy, flows, .. .))
J(flowy ? flows : flows)

and
O(flow = expr) = {flow}
O(next(flow;) = flows) = {flow;}
O(stmty, stmte) = O(stmty) U O(stmty)
O(stmt when flow) = O(stmt)

(15)
In order to gain an explicit control of the signals visibil-
ity we add an extra construct — the component — to the
list of available statements (7-10).

stmt | c(inputs, outputs){stmt) (16)

Components input and output flows are given in their
declaration:
J(c(inputs, outputs){stmt)) inputs
O(c(inputs, outputs){stmt)) = outputs

(17)

Components interface definition (16) is subject to the
following consistency conditions:

inputs 2 J(stmt) and outputs € O(stmt) (18)
2.3 HMI Model — Integration

The HMI model integrates the graphics and functional
models defined in the sections 2.1 and 2.2. The core
object of HMI models is the HMI element. It is either a
graphics node or a functional statement.

elt = node |stmt (19)

Graphics and functional definition of (2, 4, 6) and (7-
13) are modified so that their right-hand side accept
hmi elements instead of nodes and statements.
Graphics nodes being now integrated with the func-
tional layer, data flows from the functional layer may
drive the graphics state evolution. From the functional
point of view, primitive node provide the following data
flows:

J(p(& « valy,vala,--+)) {a; € & | val; # 1}
O(p(& « valy,valy,--+)) = O

(20)

e
¢

(34

Figure 2: The scene graph representation of a
gauge. As a data-driven scene graph, all but the
needle rotation attribute may be assigned con-
stant values. If the gauge is used as a speedome-
ter, functional modelling may be used to convert
the vehicle speed into an angle and to ensure that
the maximal angle threshold is never exceeded.

Finally, the graphics group defined in (3) and function
component defined in (16) are replaced by a single
construct — the hmi group component — that acts as
a HMI element container and merges the graphics and
functional hierarchies:

gc(graphics, interface){elt) (21)

where
graphics = & « valy,valy, - (22)
interface := inputs, outputs (23)

Its inputs and outputs are given by:

J(gc(graphics, interface){elt)) =
inputs U {a; € & | val; # 1} (24)

O(gc(graphics, interface){elt)) = outputs (25)

This hmi group component interface (21) is subject to
the consistency conditions (18).

2.4 Model Format and Serialization

The format used to represent HMI models — whose
structure was described in the previous sections —
has a considerable practical impact. In this section
we present the motivations behind the design of the
EDONA/HMI format, explain why we have selected a
subset of an existing graphics standard — Scalable

Vector Graphics (SVG) — as the basis for our format
and how we extended it with appropriate HMI-specific
constructs.

Format Selection. The selection of SVG as the mod-
elling language for the description of graphic content
was driven by our research for solutions that would im-
prove interoperability in HMI design. Despite signif-
icant differences, many leading solutions for embed-
ded HMI design (such as VAPS XT, ALTIA Design or
Scade Display [16]) have adopted a similar model-
driven process. Their model for graphics share the
most important structural features such as a tree-like
document structure, support for affine transforms, ba-
sic and complex shapes, styling, etc. They are how-
ever based however on proprietary formats. On the
contrary, SVG is an open and mature recommandation
from the World Wide Web (W3C) consortium, an inter-
national standards organization known for standards
such as the XML technology.

SVG is a language for describing two-dimensional
graphics in XML. While the original SVG — version 1.0
in 2001 — was designed to support vector graphics on
the Web, SVG version 1.1 is used nowadays for all
kind of vector graphics descriptions. It has a large
feature set that proved to be suitable for the kind of
graphics content that was presented in section 2.1. It
also has given birth to two standard subsets — named
profiles in the SVG recommandation — SVG Tiny and
SVG Mobile. They are specifically designed for mobile
devices, platforms that are primarily characterized by
specific constraints in terms of CPU speed, memory
size, color support, etc. The family of mobile devices
obviously contains mobile phones and personal dig-
ital assistants but the target platforms for embedded
HMI in vehicles share similar constraints. The usage
scenarios for those profiles explicitely include the mod-
elling of graphical user interfaces.

More generally, SVG 1.1 is not a monolithic standard
as it provides consistent policies to profile (restrict)
and extend the standard in order to adapt to specific
usage scenarios. As SVG 1.1 is described as a set
of independent modules, the definition of profiles is
simple. The standard extensibility policy recommands
the use foreign namespaces to complement SVG data
with application-specific content. The extra informa-
tion is simply ignored by conformant SVG applications.
This policy is used effectively in generic SVG authoring
tools [12] and also in SVG models exported by some
embedded interface designers.

The existence of several SVG authoring tools makes
the design of new HMI graphic content a simple
task. SVG being an authoritative description for vec-
tor graphics, some HMI design tools used in the au-
tomotive industry already have a partial support for
it. Therefore, the selection of SVG as a core for-
mat has the potential to increases interoperability be-
tween generic and application-specific design tools.

Beyond existing authoring tools, we also greatly bene-
fit from software libraries that support SVG such as the
Apache Batik SVG Toolkit [1]. Existing SVG software
reduce the development cost of EDONA/HMI model ed-
itors as well HMI graphics rendering engines.
EDONA/HMI SVG profile. We finally adopted a custom
mobile profile, very similar to SVG Tiny 1.1. This profile
brings a welcome simplification with respect to the full
standard. Notably, the style of graphic nodes can only
be set through individual XML attributes — called pre-
sentation attributes — and not the ‘style’ or CSS styling
mecanism. This simplification allows a uniform imple-
mentation of context assignment in data-driven scene
graphs. The handling of numerical data is also simpler
because length data have no units and always refer to
the local coordinate system. Text graphics nodes are
also more manageable because a single style can be
applied to them.

The study of HMI design use cases has also taught
us that the SVG Tiny profile supports almost every
features we needed and conversely that many of the
graphics elements and context attributes that have
been removed (filters, the support for "group opac-
ity”, etc., see [17] for a detailled list of supported con-
structs) were costly to render and not adapted to the
context of dynamic document rendering. We have only
reintroduced three features that all belong to the full
SVG 1.1 specification: gradients, opacity and clipping.
We however limit them to their simplest form: gradients
and opacity constructs are supported as in the SVG
Tiny 1.2 candidate recommandation and clipping as in
SVG Basic 1.1. We believe that this set of constructs
is currently a good trade-off between model simplicity
and the support for a large range of HMI models.

On the other hand, we exclude from the EDONA/HMI
profile the support for declarative animation of SVG
Tiny 1.1: the kind of dynamic document that these con-
structs allow are strictly contained in our full HMI model
provided that a ‘time’ input is available to HMI compo-
nents. On the other hand, the data-driven model sup-
port direct update of the graphic state that cannot be
expressed within the time-based model.

Data Flows Format. The EDONA/HMI format extends
the SVG graphics format to make the scene graph
data-driven and to describe functional constructs. The
extension design is compatible with W3C recomman-
dation and enables conformant SVG interpreters and
viewers to properly process all HMI graphics con-
tent. First of all, all data flow elements belong to the
EDONA/HMI namespace http://www.edona.fr/hmi
namespace, so that non-graphic data are ignored dur-
ing SVG processing. Then, instead of mapping group
components to an XML element in the EDONA/HMI
namespace, we implement them as a svg group that
contain an XML element with local name ‘component’
in the EDONA/HMI namespace. As a consequence,
graphic content in group components are always vis-

ible to SVG interpreters and properly processed as
groups.

The data-driven scene graph model of section 2.1 is
described through the embedding of input XML el-
ements into graphics node elements that specify the
context attribute they act upon. Although this is an as-
pect of the model that was not described in the previ-
ous sections, a symmetric output element exists to
make available the initial graphics state to the func-
tional layer.

Functional expressions (constants, function calls and
the “if-then-else” construct) as well as the delay op-
erator are mapped to XML elements and conditional
execution is handled at group component level exclu-
sively. Functional expressions have explicit input and
outputs interfaces. Sharing data flows between state-
ments is handled by a list of links in the parent compo-
nent element. This simple block-diagram model allows
easy generation and processing of functional model at
the expense of a verbose XML model. In particular,
no micro-language is used to encode functional infor-
mation in attributes as the SVG format does for path,
transform, etc. so that all functional processing may be
done with standard XML tools.

A standard library of functions has also been defined.
It contains the classical logic, numeric and comparison
operators. It also provides text processing function and
type conversions operators between numeric and text
types — the only primitive types that we actually con-
sider. SVG array-like attributes — such as ‘path’ and
‘transform’ — are not handled with specific types. In-
stead they are either considered as text attributes and
as such are fully mutable or considered as numeric ar-
rays with a fixed structure, the numeric content being
then their only mutable part.

3 EDONA/HMI Software Tools

Tool support is crucial to ensure the success of
the EDONA/HMI model. Our EDONA/HMI Prototyping
toolchain includes a set modelling tools, a generator of
HMI software components and a runtime architecture
based on JAVA. This platform is specialized for sim-
ulation in the design loop, component testing and de-
ployment on car prototypes, particularly hosts of intel-
ligent systems transportation (ITS) applications. While
the runtime component of this platform is not com-
patible with usual embedded systems constraints, it is
open-source and intended to simplify the generation of
EDONA/HMI components for such targets.

3.1 Model Management

Several types of software contributions were made to
support the EDONA/HMI design process. Among them,
a schema-based validator that checks the consistency
of XML model files against the EDONA/HMI grammair,

http://www.edona.fr/hmi

several gateways between EDONA/HMI models and
other formats, as well as internationalization tools and
a documentation generator.

Moreover, a Python library was developed that per-
forms XML data binding on HMI model files: it automat-
ically establish a mapping between HMI model con-
structs and Python classes. This library was designed
to be a suitable basis for many EDONA/HMI-related de-
velopment — for example, to speed up the development
of a HMI model editors. Internally, it was used for au-
tomatic generation of HMI models and model transfor-
mations. The need we had to start with models that
may be incorrect — for example with SVG constructs
that do not belong to the mobile profile — or are not
complete models and will not be until the final steps
of their design — has motivated the design of a lazy
data binding scheme where instances of EDONA/HMI
constructs are only bound when they are effectively
accessed. As a consequence, it may be used as the
foundation of a validators that goes beyond grammar-
level consistency checks.

The XML data binding library is also used in the
early stage of the code generation process: the func-
tional layers of HMI models are simplified into equiv-
alent models with no hierarchy and no conditional ac-
tivations. Graphic constants that feed the functional
layer are also extracted to fully decouple the functional
model from the graphics one so that the functional
code that is generated is testable and also supports
the master-slave model explained in the next section.

3.2 Runtime Architecture

HMI execution policy. Both graphics and functional
part of HMI components may be generated with dif-
ferent execution policy, the two extreme choices be-
ing either a full interpreter architecture that executes
the model at runtime or a more extensive code gen-
eration phase that produces model-independent exe-
cutable programs. We discuss in this section the pros
and cons of both options.

Our strategy for the generation of the functional part
of HMI components is straightforward: it consists in a
model simplification step (see section 3.1) followed by
a code generation step. Code generation is a simple
matter for such data-flow models where static schedul-
ing information is available [4]; its is also more efficient
at runtime than an interpreter when many low-level op-
erations are performed. More importantly, in the con-
text of HMI model prototyping, it is also simpler to im-
plement: the complexity of hierarchy and conditional
activation have been eliminated in the model simpli-
fication step while these constructs have to be main-
tained in the interpreter scheme.

The optimal execution policy for the graphics part of
HMI component is a more complex issue and largely
depends on design process and target requirements.

RENDERT
(HMI COMPONENT)

TRIGGER T

READ

V.
UPDATE
FUNCTIONAL
STATE

INPUTS S ;
GRAPHICS GRAPHICS
STATE STATE

Figure 3: architecture of the EDONA/HMI Prototyp-
ing runtime

For HMI as software components in a context with
strong embedding and safety constraints, the simplic-
ity, size and performance that result from an extensive
code generation process is likely to be preferred. A
typical code generation would then linearize the scene-
graph and translate graphic primitives into calls to a
low-level hardware-accelerated graphics platform such
as OpenGL ES, a subset of OpenGL that targets em-
bedded platforms. Considering the SVGL toolkit, an
OpenGL based SVG library, display lists can also be
used to drastically speed up rendering performances
for static parts of an SVG document [5]. On the other
hand, in the context of simulation in the design loop,
testing and prototyping, the availability of debugging
information and model snapshots, complete with the
current graphics state is crucial. Due to the complexity
of the actual graphics model, maintaining in memory
the graphics data in a structure similar to the model is
the simpler strategy. The significant performance loss
that may result from this strategy may be partially offset
by pre-rendering of the static graphics content — some-
thing the EDONA/HMI model is totally suitable for.

The EDONA/HMI Prototyping component generator
therefore uses a mixed strategy: JAVA code is gen-
erated for the functional layer whereas the graphics
model is interpreted and rendered using the BATIK
SVG toolkit — a component of the APACHE XML
GRAPHICS project — in a way that updates of the graph-
ics model are always accessible through a standard
XML API. This strategy allows — at any time during ex-
ecution — to serialize the state of a HMI component as
a new model and also allows for several graphics back-
ends: no graphics (for testing purposes), JAVA AWT
and image buffer.

There also exist some alternatives to the BATIK SVG
toolkit, including the SVGL toolkit as mentioned earlier
using OpenGL as backend. The RSVG library is also a
SVG toolkit based on Cairo, a software library used to

provide a vector graphics-based, device-independent
API for software developers. Cairo is designed to
provide primitives for 2-dimensional drawing across a
number of different backends and it is designed to use
hardware acceleration when available.

HMI runtime interface. A pure synchronous interface
for HMI components would be conceptually simple: a
sequence of activation signals, coming with new val-
ues for the HMI inputs, would trigger an execution step
for the functional layer and at the same time update of
the HMI graphics. However this scheme would have
a severe drawback: by synchronizing the rendering of
the graphics with the input flow, it may impose a fast
rendering cycle, beyond what the target is able to exe-
cute due to the cost of this step. In the most common
use case, a fixed frame rate is given that provides a
sufficient quality in the user experience and no extra
rendering steps should be performed, or the rendering
should be synchronized with an external video stream.
For other situations, such as execution for testing pur-
poses, rendering is a step that should occur on specific
breakpoints or explicit demands, the functional layer
being most of the time the only active component.
Therefore, to avoid unnecessary performance issues
and provide the needed flexibility, to the synchronous
activation signals is added a — possibly asynchronous
— rendering signal. To ensure the correctness of exe-
cutions, a duplication of the graphics state is required
in the functional component so that every new set of
input values may update the graphics state. This state
is however only transferred to the graphics layer upon
request. This partial decoupling and resulting layers
architecture is depicted in figure 3.

3.3 Intelligent Transportation System Use Case

Finally, to adress the needs of intelligent transportation
systems (ITS) embedded applications, we extended
the BATIK SVG toolkit to support the display of graphic
and textual information as video overlays as well as
the inclusion of embedded controls. A full-fledged HMI
was also designed for the LOVE [7, 14] project. LOVE
aims to use multi-sensor tracking system to improve
the road safety for pedestrians. Our HMI interface was
used to display video streams and — through specifi-
cally designed interfaces — data such as pedestrians
location and risk of collision. Real-time data acquisi-
tion and management is performed by RTMaps?, as
well as the communication with the HMI stack.

This use case validated our approach, showing its ex-
pressivity to quickly create custom components, and
the possibility to quikly integrate these components
into a full consistent system. External video streams
were also integrated, showing its capacity to interface

2“Real-Time Mutisensor Advanced Prototyping Software”,
http://www.intempora.com.

with an asynchronous environment.

I
016,09 km/h

Figure 4: EDONA-LOVe interface for the safety of
pedestrians

4 Conclusion

We presented the EDONA/HMI design process for the
design of Human-Machine Interfaces on screens in car
cockpits. This method successfully addresses typical
industrial issues in the domain of HMI design: inter-
operability, proper modelling, flexibility and rapid pro-
totyping. In addition to the design process efficiency
gain, our solution enables to promote the design pro-
cess of HMI in cars to the same level as other safety-
critical domains like avionics or power plants. Safety-
critical issues are addressed by relying on a data
driven scene graph model for the graphics part and
a synchronous model of computation for the functional
part of the EDONA/HMI system.

References

[1] Apache XML Graphics — Batik SVG Toolkit.
http://xmlgraphics.apache.org/batik/.

[2] S. Boisgérault, M. O. Abdallah, and J.-M. Tem-
mos. SVG for automotive user interfaces. In SVG
Open, Nuremberg, Germany, 2008.

[3] F. Boussinot and R. de Simone. The Esterel lan-
guage. IEEE, 79(9):1293-1304, 1991.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice.
LUSTRE: a declarative language for program-
ming synchronous systems. In POPL '87: Pro-
ceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming lan-
guages, pages 178—188, New York, NY, USA,
January 1987. ACM.

[5] S. Conversy and J.-D. Fekete. The svgl toolkit:
enabling fast rendering of rich 2d graphics. Tech-

http://www.intempora.com
http://xmlgraphics.apache.org/batik/

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

nical Report 02/1/INFO, Ecole des Mines de
Nantes, janvier 2002.

EDONA: Environnements de développement ou-
verts aux normes de l'automobile — website.
http://www.edona. fr.

G. Gate, A. Breheret, and F. Nashashibi. Central-
ized fusion based algorithm for fast people detec-
tion in dense environment. In Proc. of the IEEE In-
ternational Conference on Robotics and Automa-
tion, Kobe, Japan, May 2009.

N. Halbwachs. Synchronous programming of re-
active systems. Kluwer, 1993.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pi-
laud. The synchronous dataflow programming
language LUSTRE. Proceedings of the IEEE,
79(9):1305—-1320, September 1991.

N. Halbwachs, F. Lagnier, and C. Ratel. Pro-
gramming and verifying real-time systems by
means of the synchronous data-flow language
LUSTRE. IEEE Transactions on Software Engi-
neering (TSE), Special issue: Specification and
Analysis of Real-Time Systems, 18(9):785-793,
September 1992.

Human Machine Interface — Work Package 4.
EDONA HMI Format. Report, EDONA, 2008.

Inkspace - open source scalable vector graphics
editor. Technical report. http://www.inkscape.
org/.

P. Le Guernic, T. Gauthier, M. Le Borgne, and
C. Le Maire. Programming real-time applications
with SIGNAL. IEEE, 79(9):1321-1336, 1991.

LOVe: Logiciel d’Observation des
Vulnérables, project website. http:

//love.univ-bpclermont.fr.

V. Papailiopoulou. Automatic test generation for
lustre/scade programs. In ASE '08: Proceed-
ings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering,
pages 517-520, Washington, DC, USA, 2008.
IEEE Computer Society.

The standard for the development of crit-
ical embedded display software. http:
//www.esterel-technologies.com/products/

scade—-display/.

Mobile SVG Profiles: SVG Tiny and SVG Basic.
W3C recommendation, W3C, June 2009. nttp:
//www.w3.0rg/TR/SVGMobile/.

Scalable Vector Graphics (SVG) 1.1 specifica-
tion. W3C recommendation, W3C, January 2003.
http://www.w3.0rg/TR/SVG

http://www.edona.fr
http://www.inkscape.org/
http://www.inkscape.org/
http://love.univ-bpclermont.fr
http://love.univ-bpclermont.fr
http://www.esterel-technologies.com/products/scade-display/
http://www.esterel-technologies.com/products/scade-display/
http://www.esterel-technologies.com/products/scade-display/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/SVG

	Introduction
	HMI Models
	Data-driven Scene Graph
	Functional Model
	HMI Model -- Integration
	Model Format and Serialization

	Edona/hmi Software Tools
	Model Management
	Runtime Architecture
	Intelligent Transportation System Use Case

	Conclusion

